Archives du mot-clé tables de multiplication

Fiches autocorrectives pour s’entraîner aux divisions décimales

Voici (enfin) les fiches autocorrectives pour s’entraîner aux divisions décimales posées. Comme pour les autres fiches dédiées au calcul posé (additions, soustractions, multiplications, divisions et décimaux), j’ai conservé le code couleur vert, bleu, rouge, noir façon pistes de ski qui parle bien aux élèves. Chaque fiche propose deux opérations avec correction au verso.

J’ai passé beaucoup de temps à « régler » la difficulté des différents niveaux. Je pense que la progression devrait permettre aux élèves d’avancer petit à petit sur cette technique de calcul décimal mais n’hésitez pas à me faire des retours via un petit commentaire si vous constatez à l’usage que tel ou tel niveau mériterait un petit réglage 😉 En résumé :

  • Niveau vert : division au dixième d’un nombre compris entre 10 et 99 par un nombre compris entre 2 et 6.
  • Niveau bleu : division au dixième d’un nombre compris entre 100 et 999 par un nombre compris entre 5 et 9.
  • Niveau rouge : division au centième d’un nombre compris entre 100 et 2000 par un nombre compris entre 7 et 20 ET divisions d’un décimal par un entier.
  • Niveau noir : division au millième d’un nombre compris entre 500 et 9999 par un nombre jusqu’à 99 (avec majorité de nombres < 30) ET divisions d’un décimal par un entier.

Je crois l’avoir précisé dans les autres articles mais les élèves n’ont pas vocation à écrire sur les fiches en question (au Velleda ou autre Woody) car elles ne sont pas assez grandes pour cela. L’idée est de poser l’opération sur son ardoise, son cahier d’entraînement ou autre puis de vérifier avec la correction.

Les fichiers sont disponibles ci-dessous ; chaque fichier contient 40 fiches d’entraînement. Il sont à imprimer en recto-verso avec l’option « retourner sur les bords courts » afin que la correction du verso soit dans le bon sens par rapport au recto :

J’ai aussi préparé un mémo des tables de multiplication qui peut aider les élèves qui ne connaissent pas encore bien leurs tables. En effet, avant je proposais systématiquement la table de Pythagore mais celle-ci peut s’avérer de lecture complexe pour ces mêmes élèves (elle me semblent toutefois toujours valable pour les tables de 11 à 20, je vous laisse aller jeter un oeil à l’article). Pour ce mémo, je préfère personnellement la version en deuxième page que je trouve plus lisible :

Comme je le disais plus haut, n’hésitez pas à me faire part de vos remarques !

Publicité

S’entraîner aux tables avec les puissance 4 multiplication

Je poursuis ma lancée sur l’apprentissage de la multiplication avec un jeu de type puissance 4 pour apprendre les tables. L’idée est relativement simple et le jeu se pratique comme un puissance 4 normal : deux joueurs s’affrontent et doivent aligner quatre cases pour gagner. Pour prendre une case, le joueur doit calculer le résultat « ligne x colonne » et l’écrire dans la case qu’il souhaite prendre (les nombres à multiplier étant écrits en bout de ligne et colonne on travaille en plus la lecture du tableau double entrée). Mes élèves adorent ! Je les laisse à disposition avec mes ateliers autonomes en fond de classe et laisse les élèves jouer, et apprendre en jouant, quand ils ont du temps.

Comme je le disais en introduction, la règle du jeu est accessible immédiatement pour la grande majorité, la seule subtilité étant que ceux qui ne sont pas habitués à jouer au jeu de puissance 4 doivent comprendre qu’un puissance 4 « ça tombe » et qu’on doit donc commencer par prendre les cases du bas.

J’ai préparé plusieurs fiches et regroupé plusieurs tables sur une même fiche. Le nombre de cases sur un verso n’étant pas suffisant pour inclure toutes les combinaisons (de x1 à x10), un ensemble de table est traité en deux fiches (ouvrez un fichier, ça sera sûrement plus clair que mes explications) :

J’ai inclus une correction au dos, pour que les élèves aient une référence en cas de doute. Le fait qu’elle soit au dos évite de jouer en « mode lecture » et nécessite forcément l’appel à la mémoire. Ceci dit, on peut faire sans en laissant à disposition une table de Pythagore ou un mémo des tables (voir en bas de l’article) à distance. En imprimant uniquement les puissance 4 sans correction, un jeu de table peut être traité avec une seule feuille, ce qui permet de limiter le nombre de fiches au total. Les feuilles sont à glisser dans des pochettes plastiques, les élèves travaillant au feutre effaçable.

Quelques petites notes supplémentaires… Ça se joue bien aussi en équipe avec le TBI dans le cadre de petits défis de classe ou pendant les après-midi pré-vacances 🙂 Une autre piste à explorer serait de faire un jeu à chaque élève pour qu’ils puissent jouer à la maison contre frères et soeurs ou parents et ainsi renforcer le lien école famille avec des « devoirs » amusants… je suis malheureusement tombé en panne de pochettes à ce moment là.

La table de Pythagore

Toujours sur des problématiques liées à la multiplication, voici une présentation que j’ai utilisé avec mes élèves pour leur présenter la table de Pythagore. La présentation est disponible ci-dessous en ligne (à utiliser en plein écran). La suite de mes notes (et d’autres fichiers) après la présentation, que je vous laisse le plus haut possible dans l’article (cliquez sur les 3 points pour pouvoir basculer en plein écran).

Je vous invite, mais ça va sans dire, à faire défiler la présentation en entier avant de l’utiliser avec vos élèves ; j’ai mis quelques commentaires sur certaines diapositives afin de faciliter la présentation.

J’ai inclus quelques notes sur le personnage historique de Pythagore ainsi que, sur la dernière diapositive, un clin d’oeil au théorème de Pythagore que nos élèves rencontreront au collège. Certains d’entre eux sont d’ailleurs revenus le lendemain en me disant en avoir parlé avec leurs grands-frères et grandes-soeurs. Ils en étaient ravis.

J’ai choisi de « faire parler » Pythagore, afin de rendre la présentation plus vivante, il n’y a pas d’obligation à lire le texte dans les bulles, les élèves lisant globalement le texte assez vite. Je me suis contenté de commenter, reformuler, compléter ce qui était dit par Pythagore dans « sa » présentation. C’est la première fois cette année que je procède de la sorte et j’ai constaté que les élèves s’étaient bien plus approprié l’outil que les fois précédentes. De l’avantage d’avoir un TBI ! 🙂

Je vous mets aussi les liens de téléchargement des fichiers au format powerpoint et open document pour une utilisation sans accès internet mais le problème qui risque de se poser est qu’il vous faudra avoir sur votre ordinateur les polices de caractères que j’ai utilisé dans la présentation afin que celle-ci s’affiche correctement à l’écran (Amatic SC et Comfortaa qui sont disponibles gratuitement sur fonts.google.com).

Enfin, voici un fichier contenant une matrice vierge pour que les élèves puissent se construire une table de Pythagore de référence ainsi que des tables pré-remplies (que j’imprime en 2 pages par feuilles puis que je plastifie pour mettre dans la caisse à outils en fond de classe) :

Ajout : Un fichier avec la référence pour les tables entre 11 et 20 que l’on peut utiliser sur certaines divisions complexes : La table de Pythagore – Référence 11 à 20.pdf

Note : Pour les élèves « dys » qui ont souvent du mal à se repérer dans un quadrillage, l’utilisation d’un mémo des tables tel que celui que l’on peut trouver en bas de cet article est plus adapté.

N’hésitez pas à me faire part de vos remarques, c’est la première fois que j’utilise les présentations embarquées depuis google slides… J’espère que cela fonctionnera pour tout le monde.

Mise à jour du 13/01/22 : J’ai rajouté la présentation en version pdf. Elle contient beaucoup de page mais cela permet de « simuler » les animations powerpoint pour faire apparaitre les éléments importants. Il suffit donc de se mettre en plein écran et de faire défiler page par page pour retrouver l’animation des autres présentations.