Fiches autocorrectives pour la soustraction par cassage

Cette année, après mon passage en CE2, j’ai fait le choix d’utiliser MHM. La soustraction y est travaillée avec la méthode par cassage dont la logique est plus facilement accessible – je casse un billet de 10 en 10 pièces de 1 (en vrai, je pense que cela se discute mais ce n’est pas l’objet). Pour systématiser et permettre à mes élèves de travailler en autonomie la soustraction par cassage, j’ai crée des fiches autocorrectives similaires à celles que j’avais créées pour mes CM1/CM2 lorsque je travaillais avec la technique par emprunt : quatre opérations à poser au recto avec les corrections au verso.

Utilisation en classe

J’ai repris le code couleur vert / bleu / rouge et noir pour marquer la difficulté car il donne une bonne visibilité aux élèves d’où ils en sont. Je laisse les cartes à disposition au coin maths avec une affiche de suivi où les élèves cochent et marquent leur avancée et j’intègre une ligne du style « s’entraîner en calcul posé » dans leur plan de travail hebdomadaire. Je leur demande de valider 4 ou 5 fiches d’un niveau (par exemple en réussissant 3 opérations sur les 4) avant de pouvoir passer au suivant. L’idée n’est donc pas de faire l’ensemble des fiches d’un niveau donné mais de vérifier que l’on maîtrise suffisamment une difficulté avant de passer à plus dur.

Je vais essayer de partager ces affiches de suivi dans un prochain article, ça fait plusieurs fois qu’on me les demande et j’ai aussi eu des retours avec vos outils de suivi (merci Anne). C’est à suivre.

Fichiers à télécharger

Les fichiers sont disponibles ici :

Notes

Si vous avez déjà traîné sur mon blog, vous êtes peut-être tombés sur les autres fiches autocorrectives pour s’entraîner au calcul posé :

Je reviens sur ce que je disais en introduction. Je ne ferais personnellement pas le pari de la simplicité du cassage par rapport à la technique par emprunt car l’écriture par cassage fait souvent perdre les alignements (notamment pour les élèves avec des difficultés en graphie) en particulier en cas de retenues nombreuses et la logique du cassage est complexe quand un zéro s’insère dans le nombre (1203 – 14 par exemple). La logique de l’emprunt n’est pas simple non plus – j’emprunte 10 pièces de 1 donc je te rendrais un billet de 10 en plus – mais pas forcément plus complexe et l’écriture a l’avantage de garder une certaine compacité… au prix d’une signification différente de la retenue du haut / du bas. Il y a des élèves plus à l’aise avec l’une et d’autres plus à l’aise avec l’autre.

Un commentaire sur « Fiches autocorrectives pour la soustraction par cassage »

  1. Merci pour ces fiches, exactement ce que je cherchais pour mes élèves de CE1-CE2 ! je découvre votre site et je mettrai en place ces entrainements au calcul dès la rentrée.

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s